B12-Catalyzed Generation of Allylic Chromium Reagents from 1,3-Dienes, CrCl₂, and Water

Kazuhiko Takai* and Chika Toratsu

Department of Applied Chemistry, Faculty of Engineering, Okayama University, Tsushima, Okayama 700-8530, Japan

Received July 20, 1998

Although allylic chromium reagents are useful tools for stereoselective carbon-carbon bond formation under mild conditions, their source has been almost limited to allylic halides¹ and pseudohalides.² Recently, we have reported the generation of allylic chromium compounds by addition of alkyl radicals to 1,3-dienes and successive one-electron reduction with chromium $(II).$ ³ However, the method could not provide a hydrogen radical, and thus, a simple reaction between a diene and an aldehyde was not realized. We report here a novel access to the reagents from 1,3-dienes and a chromium hydride equivalent generated from CrCl₂, B_{12} (cyanocobalamin), and water.

Addition of a metal hydride to a 1,3-diene produces an allylic metal compound when the hydride adds to the C-1 of the diene and the metal adds to the $C-2$ or $C-4$.⁴ Although there is no direct method to provide appropriate chromium hydride species,⁵ cobalt hydride species react with a 1,3diene in the desired fashion to give allylic cobalt compounds.6,7 An organic moiety on cobalt compounds smoothly transfers to chromium by treatment with chromium(II).8 In addition, a cobalt hydride species of B_{12} can be prepared by treatment of low-valent B_{12s} with water.⁹⁻¹¹ These observations prompted us to explore the novel preparation of allylic chromium reagents from 1,3-dienes with a cobalt catalyst.

(2) (a) Allyl tosylate: Okude, Y.; Hirano, S.; Hiyama, T.; Nozaki, H. *J. Am. Chem. Soc.* **1977**, *99*, 3179. (b) Allylic mesylate: Kato, N.; Tanaka, S.;
Takeshita, H. *Chem. Lett. 1986*, 1989. (c) Allylic phosphate: Takai, K.;
Nozaki, H. *Abstr. 4th ICOS Tokyo* **1982**, B-II-2302. Jubert, C.; *57*, 6384. Nowotny, S.; Tucker, C. E.; Jubert, C.; Knochel, P. *J. Org. Chem.* **1995**, *60*, 2762. (d) 1,3-Diene monoepoxide: Fujimura, O.; Takai, K.; Utimoto, K. *J. Org. Chem.* **1990**, *55*, 1705. (3) Takai, K.; Matsukawa, N.; Takahashi, A.; Fujii, T. *Angew. Chem.,*

Int. Ed. Engl. **1998**, *37*, 152.

(4) For some representative examples, see: (a) Ti: Sato, F.; Ishikawa, H.; Sato, M. *Tetrahedron Lett.* **1980**, *21*, 365. Klei, B.; Teuben, J. H.; de Liefde Meijer, H. J. *J. Chem. Soc*.*, Chem. Commun.* **1981**, 342. Kobayashi, Y. Umeyama, K.; Sato, F. *J. Chem. Soc*.*, Chem. Commun.* **1984**, 621. Gao, Y.; Urabe, H.; Sato, F. *J. Org. Chem.* **1994**, *59*, 5521. Szymoniak, J.; Thery,
N.; Moïse, C. *Synlett* **1997**, 1239. (b) Ni: Sato, Y.; Takimoto, M.; Hayashi, K.; Katsuhara, T.; Takagi, K.; Mori, M. *J. Am. Chem. Soc.* **1994**, *116*, 9771. Sato, Y.; Saito, N.; Mori, M. *Tetrahedron Lett.* **1997**, *38*, 3931. (c) Si: Kobayashi, S.; Nishio, K. *J. Org. Chem. 1994, 59, 6620. (d) B: Sato, M.; Nomoto, Y.; Nishio, N.; J. Drg. Chem. 1944, 59, 6820. (d) B: Sato, M*

S. C.; Darensbourg, M. Y. *Organometallics* **1984**, *3*, 646. (6) (a) Co(SCN)(PPh3)3, H2: Nakayama, T.; Kanai, H. *Bull. Chem. Soc.*

Jpn. **1985**, *58*, 16. (b) HCo(dmgH)2py: Howell, A. R.; Pattenden, G. *J. Chem. Šoc., Chem. Commun.* **1990**, 103. (c) HCo(CN)₅³⁻: Reger, D. L.; Habib, M.
M.; Fauth, D. J. *J. Org. Chem.* **1980**, 45, 3860. Lee, J.-T.; Alper, H. *J. Org.
<i>Chem.* **1990**, 55, 1854. (d) Co(acac)₃, Et₂AlCl, PPh₃: S. J. *Tetrahedron Lett.* **1996**, *37*, 2749.

(7) Bo¨nnemann, H. *Angew. Chem., Int. Ed. Engl.* **1973**, *12*, 964.

(8) (a) Espenson, J. H.; Shveima, J. S. *J. Am. Chem. Soc.* **1973**, *95*, 4468; Espenson, J. H.; Sellers, T. D., Jr. *J. Am. Chem. Soc.* **1974**, *96*, 94. (b) Takai, K.; Nitta, K.; Fujimura, O.; Utimoto, K. *J. Org. Chem.* **1989**, *54*, 4732. (9) Boos, R. N.; Carr, J. E.; Conn, J. B. *Science* **1953**, *117*, 603. Beaven,

G. H.; Johnson, E. A. *Nature* **1955**, *176*, 1264.

To a mixture of $CrCl₂$ (4.0 equiv) and $B₁₂$ (0.10 equiv) in dry DMF was added a solution of 3-phenylpropanal and 2,3 dimethyl-1,3-butadiene (2.0 equiv) in DMF. The deep green color of the mixture gradually darkened with stirring.10 Then, the mixture was heated to 40 °C, and a DMF solution of water (0.2 M, 1.0 equiv) was added over a period of 2 h. After usual workup with water, homoallylic alcohol **1** was obtained in 90% yield (eq 1).¹² The coupling reaction only

proceeded with the addition of B_{12} .¹³ For the reaction to go to completion, it is important that the reactions between organochromium reagents and carbonyl compounds are not disturbed by the presence of $1-3$ equiv of a proton source.¹⁴ However, the addition of water in one portion caused the reaction to not go to completion, suggesting that the allylic chromium species was protonated to some extent. When D_2O in DMF was added in one portion to the reaction mixture, deuterium was introduced at the methyl position with a content of 48%.15

The results obtained with several kinds of 1,3-dienes are summarized in Table 1. The diastereoselectivity of the reaction between the crotylchromium species and nonanal was 72/28 (Table 1, entry 1), which is almost equal to the ratio observed for the reaction with crotyl bromide and CrCl₂ in DMF.2a This is explained by a fast equilibrium between (*E*)- and (*Z*)-crotylchromium in the solvent.^{2c} Therefore, geometrically fixed allylic chromium compounds derived from 1,3-cyclohexadiene and 3-methylene-1-cyclohexene, respectively, produced each of the diastereomers exclusively (entries 5 and 6). A 1,3-diene having an s-trans configuration also gave the corresponding allylic chromium reagent (entry 6). The result suggests that the hydrocobaltation step proceeds in a 1,2-fashion.⁶ In the case of unsymmetrical 1,3dienes, the cobalt hydride added selectively to form more stable allylic radicals after cleavage of cobalt-carbon bonds (entries 2-8).6 Selective formation of (*E*)-homoallylic alcohol by the reaction between 2-propenylidenecyclohexane and 3-phenylpropanal possibly stemmed from a six-membered transition state of less steric demand (entry 7). The generated allylic chromium species showed aldehyde-selective addition (entry 4) as did those obtained from allylic halides and CrCl₂.^{2a} 2-(Benzyloxy)-1,3-butadiene can also be employed for the reaction producing stereoselectively an anti adduct (entry 8).16

⁽¹⁾ For reviews of organochromium reagents, see: (a) Takai, K.; Utimoto, K. *J. Synth. Org. Chem. Jpn.* **1988**, *46*, 66. (b) Saccomano, N. A. In *Comprehensive Organic Synthesis*; Trost, B. M., Ed; Pergamon Press: Oxford, 1991; Vol. 1, p 173. (c) Cintas, P. *Synthesis* **1992**, 248.

⁽¹⁰⁾ Schrauzer, G. N.; Holland, R. J. *J. Am. Chem. Soc.* **1971**, *93*, 4060. (11) For reviews of carbon-carbon bond formation using B_{12} , see: Scheffold, R.; Rytz, G.; Walder, L.; Orlinski, R.; Chimonczyk, Z. *Pure Appl. Chem*. **1983**, *55*, 1791. Scheffold, R. *Chimia* **1985**, *39*, 203.

⁽¹²⁾ Under the standard reaction conditions (eq 1), compounds were recovered in the following order: 1-dodecene (90%); 1-dodecyne (92%); 1-chlorododecane (96%); nonanal diethylene acetal (94%); ethyl octanoate (93%); nonanenitrile (90%).

⁽¹³⁾ When 2-methyl-1,3-tetradecadiene and 3-phenylpropanal were treated at 25 °C with CrCl₂ and water in the absence of B_{12} , the 1,3-diene was recovered in 95% yield after 24 h of stirring. The reaction also proceeded by the addition of cobalt phthalocyanine (2.5 mol %), although the yield of **1** was only 58%.

^{(14) (}a) Kauffmann, T.; Abel, K.; Bonrath, W.; Kolb, M.; Möller, T.; Pahde, C.; Raedeker, S.; Robert, M.; Wensing, M.; Wichmann, B. *Tetrahedron Lett.* **1986**, *27*, 5351. Kauffmann, T. *Synthesis* **1995**, 745. (b) Kato, N.; Takeshita, H.; Kataoka, H.; Ohbuchi, S.; Tanaka, S. *J. Chem. Soc., Perkin Trans. 1* **1989**, 165.

⁽¹⁵⁾ Although the reaction slowly proceeded without addition of water, it did not go to completion. Quenching the reaction mixture with D_2O did not give the deuterated product, probably because unremoved water in the solvent and hydroxyl group of B12 supply protons. (16) Takai, K.; Nitta, K.; Utimoto, K. *Tetrahedron Lett.* **1988**, *29*, 5263.

Table 1. Reactions between 1,3-Dienes and Aldehydes Mediated by CrCl₂, B₁₂, and Water^a

		$RCHO + \oslash \simeq$			$CrCl2$, cat. $B12$, $H2O$ R DMF ŌН		
entry	aldehyde	$1,3$ -diene		temp, °C time, h	product(s)	yield, %	isomeric ratio ^b
$\mathbf{1}$	n -C ₈ H ₁₇ CHO		25	3.5	$n\text{-}C_8H_{17}$ + $n - C_8H_{17}$	$88^{\rm\scriptsize C}$	anti / syn = $72/28$
\overline{c}	Ph(CH ₂) ₂ CHO		40	$\mathbf{1}$	$Ph \sim$ Ph. 3 ÓН ΟН	94	$2/3 = 86/14$
3	$Ph(CH_2)_2$ CHO		$40\,$	$\sqrt{2}$	Ph. ÒН	90	<i>anti</i> -3 / <i>syn</i> -3 = 64 / 36
4		CHO	40	$\sqrt{2}$	ÒН	$81\,$	
5	n -C ₈ H ₁₇ CHO		$40\,$	$\sqrt{2}$	$n - C_8H_{17}$	93	<i>anti</i> / $syn = <1$ / >99
6	PhCHO		40	0.5	Ph OН	84	anti / syn = $<$ 1 / >99
7	$Ph(CH_2)_2CHO$		40	$\overline{\mathbf{3}}$	Ph ² HQ' Ph [*] ЮH	$85d$	$E/Z = 95/5$
8	n -C ₈ H ₁₇ CHO	OBn	40	0.5	BnO BnO $n - C_8H_{17}$ ÕΗ OH	94	<i>anti</i> / $syn = 86 / 14$

 a The reactions were conducted on a 1.0-mmol scale. 1,3-Diene (2.0 mol), CrCl₂ (4.0 mol), water (1.0 mol), and B₁₂ (0.10 mol) were used per mol of a carbonyl compound. bDiastereomeric ratios were determined by isolation and/or ¹H NMR spectroscopy. ^CAn excess amount of butadiene was used. d_1 , 3-Diene (3.0 equiv), CrCl₂ (6.0 equiv), water (1.5 equiv), and B₁₂ (0.15 equiv) were employed.

We are tempted to assume the following mechanism for the reaction (Scheme 1).¹⁷ Cobalt(I) species, B_{12s} , derived by the reduction of B_{12} with 2 equiv of chromium(II)

chloride,⁹ affords hydridocobalamin by reaction with water.¹⁰ Hydrocobaltation of the cobalt hydride species to a 1,3-diene produces an allylcobalt(III) species.⁷ Homolytic cleavage of allylcobalt(III) to an allyl radical followed by trapping with chromium(II) gives allylchromium(III), 6b, 19 which adds to the carbonyl compounds in a selective manner.2 Reduction of cobalt(II) with chromium(II) regenerates the cobalt(I) species.

Acknowledgment. We thank Prof. Tetsuo Toraya, Department of Bioscience and Biotechnology, Faculty of Engineering, Okayama University, for valuable suggestions. This work was supported by a Grant-in-Aid for Scientific Research on Priority Area No. 283 from the Ministry of Education, Science, Sports and Culture, Japan.

Supporting Information Available: General procedure and spectroscopic and analytical data of compounds in Table 1 (4 pages).

JO9814086

⁽¹⁷⁾ Another possible mechanism is as follows: (1) insertion of a lowvalent cobalt to a carbon-hydrogen bond of an aldehyde; (2) hydroacyl-ation;18 (3) successive reduction of a ketone. However, when we prepared 1-deuterio-3-phenylpropanal and used it in the reaction with 2,3-dimethyl-1,3-butadiene, deuterium was found only at the carbon attached to a hydroxyl group of the adduct **1**. In addition, a ketone functionality remained untouched during the reaction (Table 1, entry 4). These results argue against the hydroacylation-reduction mechanism.

⁽¹⁸⁾ Lenges, C. P.; Brookhart, M. *J. Am. Chem. Soc.* **1997**, *119*, 3165. (19) Direct transmetalation of an allylic group from cobalt(III) with chromium(III) could not be eliminated.8.